Wednesday, May 29, 2019
Chemical Bonding :: essays research papers fc
Chemical reactions involve the making and prison-breakinging of bonds. It is essential that we know what bonds argon before we can understand both chemical reaction. To understand bonds, we will first describe several of their properties. The bond strength tells us how hard it is to break a bond. Bond lengths give us valuable structural in imprintation about the positions of the moteic nuclei. Bond dipoles inform us about the electron diffusion around the two bonded atoms. From bond dipoles we whitethorn derive electr unitygativity data useful for predicting the bond dipoles of bonds that may have never been made before. From these properties of bonds we will get together that there are two unfathomed types of bonds--covalent and ionic. Covalent hold fast represents a situation of about cope with sharing of the electrons surrounded by nuclei in the bond. Covalent bonds are formed between atoms of approximately equal electronegativity. Because each atom has near equal pull for the electrons in the bond, the electrons are not completely transferred from one atom to another. When the difference in electronegativity between the two atoms in a bond is large, the more electronegative atom can strip an electron strike of the less electronegative one to form a negatively charged anion and a positively charged cation. The two ions are held together in an ionic bond because the oppositely charged ions curl each other as exposit by Coulombs Law. Ionic compounds, when in the solid state, can be described as ionic lattices whose builds are compulsive by the need to place oppositely charged ions close to each other and similarly charged ions as far apart as possible. though there is some structural diversity in ionic compounds, covalent compounds present us with a military personnel of structural possibilities. From simple linear molecules manage H2 to complex chains of atoms like butane (CH3CH2CH2CH3), covalent molecules can take on many shapes. To help de cide which shape a polyatomic molecule major power prefer we will use Valence Shell Electron Pair Repulsion theory (VSEPR). VSEPR states that electrons like to await as far away from one another as possible to provide the lowest energy (i.e. most stable) structure for any bonding arrangement. In this way, VSEPR is a powerful tool for predicting the geometries of covalent molecules. The development of quantum mechanics in the 1920s and 1930s has revolutionized our understanding of the chemical bond. It has allowed chemists to advance from the simple picture that covalent and ionic bonding affords to a more complex sit based on molecular orbital theory.Chemical Bonding essays research papers fc Chemical reactions involve the making and breaking of bonds. It is essential that we know what bonds are before we can understand any chemical reaction. To understand bonds, we will first describe several of their properties. The bond strength tells us how hard it is to break a bond. Bon d lengths give us valuable structural information about the positions of the atomic nuclei. Bond dipoles inform us about the electron distribution around the two bonded atoms. From bond dipoles we may derive electronegativity data useful for predicting the bond dipoles of bonds that may have never been made before. From these properties of bonds we will see that there are two fundamental types of bonds--covalent and ionic. Covalent bonding represents a situation of about equal sharing of the electrons between nuclei in the bond. Covalent bonds are formed between atoms of approximately equal electronegativity. Because each atom has near equal pull for the electrons in the bond, the electrons are not completely transferred from one atom to another. When the difference in electronegativity between the two atoms in a bond is large, the more electronegative atom can strip an electron off of the less electronegative one to form a negatively charged anion and a positively charged cation. T he two ions are held together in an ionic bond because the oppositely charged ions attract each other as described by Coulombs Law. Ionic compounds, when in the solid state, can be described as ionic lattices whose shapes are dictated by the need to place oppositely charged ions close to each other and similarly charged ions as far apart as possible. Though there is some structural diversity in ionic compounds, covalent compounds present us with a world of structural possibilities. From simple linear molecules like H2 to complex chains of atoms like butane (CH3CH2CH2CH3), covalent molecules can take on many shapes. To help decide which shape a polyatomic molecule might prefer we will use Valence Shell Electron Pair Repulsion theory (VSEPR). VSEPR states that electrons like to stay as far away from one another as possible to provide the lowest energy (i.e. most stable) structure for any bonding arrangement. In this way, VSEPR is a powerful tool for predicting the geometries of covale nt molecules. The development of quantum mechanics in the 1920s and 1930s has revolutionized our understanding of the chemical bond. It has allowed chemists to advance from the simple picture that covalent and ionic bonding affords to a more complex model based on molecular orbital theory.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.